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We study a dynamical system defined by a map of the interval [0, 1 ] which has 
0 as an indifferent fixed point but is otherwise expanding. We prove that the 
sequence of successive entrance times in a small neighborhood [0, a] converges 
in law when suitably normalized to a homogeneous Poisson point process. 
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1. I N T R O D U C T I O N  

In this pape r  we s tudy a dynamica l  system defined by  a m a p  of the interval  
[0, 1-] which has 0 as an indifferent (marg ina l )  fixed po in t  but  is otherwise 
expanding.  We al low the system to s tar t  with any absolu te ly  con t inuous  
init ial  d i s t r ibu t ion  with densi ty  of b o u n d e d  var ia t ion  whose suppor t  is 

away  from 0. 
We prove  tha t  the sequence of successive ent rance  t imes in a small  

n e i g h b o r h o o d  [0, a ]  converges  in law (in d i s t r ibu t ion)  when sui tably  
normal i zed  to a homogeneous  Poisson  po in t  process.  The  norma l i za t ion  
does  no t  depend  on the init ial  d is t r ibut ion .  

The  p ro to type  of this family of maps  is the t r ans format ion  

f x / ( 1 - - x )  for x~< 1/2 

f ( x )  = ~ 2 x - -  1 for x > 1/2 
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Systems of this type were suggested as models of temporal intermittence by 
Pomeau and Manneville. (14) One can distinguish a laminar regime when 
the point x is near the indifferent (marginal) fixed point ( x = 0 )  and a 
turbulent regime when the point x is away from this fixed point. In the 
laminar regime the time evolution is rather regular and slow, while in the 
turbulent regime we have instability and a sensitive dependence to initial 
conditions. The global time evolution of a typical trajectory is composed of 
laminar phases separated by turbulent bursts. 

The main point about such systems is that although the SRB measure 
is the Dirac measure at the indifferent fixed point x = 0 ,  ~11) the dynamics 
displays this interesting intermittence phenomenon. In other words, for any 
continuous function g and almost every initial condition x with respect to 
the Lebesgue measure, the asymptotic time average is g(0), i.e., 

lira 1 ~ 1  - g( fn(x))  =g(0)  
1/---~ o o  / ' /  . 

j = 0  

The turbulent bursts, on the other hand, are associated with another 
absolutely continuous invariant measure # which is nonnormalizable. ~2'4'1~ 
If the function g e C o has a support which does not contain the indifferent 
fixed point x = 0, we have 

log n n- 1 L~ ( 
n ~ g( f" (x ) )  ~ J g d~ 

j = 0  

This behavior is related to the divergence of the expectation of the return 
times of the orbit, and to the poor mixing properties of this system. This 
is the main technical difficulty of the present paper. 

In this picture our result says that the starting points of long laminar 
phases are Poissonian distributed. This can be illustrated as follows. Fix a 
small number a >0 ,  and on a (discrete) tike (half) line put a dot at the 
instants n where the state x ,  of the system is in the interval ]0, a]. For  a 
initial condition distributed according to the normalized Lebesgue measure 
on a closed interval which does not contain zero, one generates by this 
procedure a point process on the real half-line. Our main result states that 
one can find a normalization /3a (diverging when a '~0) of the time scale 
such that the renormalized point process converges in law (in distribution) 
to a Poisson point process. 

Let us discuss briefly the physical implications of this result. Since the 
statistics of Poisson point processes are so peculiar, this precise information 
should provide a sensitive test of the adequacy of the model. Moreover, 
the fact that the entrance times have independent exponential laws is a 
rigorous way of expressing the unpredictability of these events. 
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The fact that Poisson point processes appear as asymptotic laws for 
a broad class of dynamical situations seems to have attracted a lot of 
fishermen recently. As far as we know, the first result in this context is 
due to Doeblinff ) In the context of finite Markov chains, the first result is 
due to Bellman and Harris (3) (see also ref. 13 and the interesting book by 
Aldous(1)). In the context of Axiom A dynamical systems the question was 
treated recently in several papers by Sinai, (16) Hirata, (8) and ourselves. (5) 
The present paper extends previous results obtained in ref. 6 for piecewise 
affine maps. 

Even though the techniques are quite different, our method is similar 
to the one developed in the so-called pathwise approach to metastability 
and we refer to the survey paper by Schonmann (15) for a recent review of 
this subject. 

The paper is organized in the following way. The class of dynamical 
systems we study is defined in the next section, which also contains the 
statement of the Main Theorem. Section 3 introduces the induced map 
which is the main tool of our proof and recalls some basic related results. 
Section 4 presents the basic a p r i o r i  estimates about the first entrance time. 
Finally, Sections 5 and 6 develop the proof of the Main Theorem. 

2. MODEL AND MAIN RESULT 

Let f be the map of the unit interval [0, 1 ] defined in the folowing 
way: 

(i) f(O)=O. 

(ii) f is monotone C 3 on the intervals ]1/2, l [  and ]0, 1/2[ and 
satisfies f ( ] 0 ,  1 / 2 [ ) = f ( ] l / 2 ,  l [ ) =  ]0, 1[. 

(iii) The slope of f is larger than one on ]0, 1/2[ and larger (in 
absolute value) than a positive number f i > l  on J1/2, 1[. 
Moreover, f ' (0 )  = 1 and f" (0)  > 0. 

Note that it is easy to extend the map on each closed interval [ 1/2, 1 ] 
and [0, 1/2]. 

The interation of the map f defines a dynamical system system of the 
interval except for the countable set of preimages of the discontinuity point 
1/2. We will only consider below absolutely continuous probability 
measures for the distribution of the initial condition. We will denote as 
usual by f "  the nth iterate of the map f. 

Let I =  (x,,) be the decreasing sequence of preimages of 1/2 defined 
recursively by xo = 1/2 and for n > 0 

x,, = inf{x I f ( x )  = x .  1 } 
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We also define an integer-valued function U by 

{~ if f ( x ) ~ ] l / 2 , 1 ]  
V ( x )  = 

+ 1 if f ( x )  e ]x, ,  x,  1 [ 

We will study the sequence of entrance times into a small 
neighborhood [0, a]  of the indifferent fixed point x = 0. More precisely, for 
any x belonging to [1/2, 1] we define 

T~(x) = inf{n > 0: f ' ( x )  s [0, a]  } 

and the sequence T~(x), for j = 2, 3,..., by 

T~(x) -- inf{n > T~- ~(x) + U o f  r~ l ( x )  --  l ( x )  - -  1: fn(x) e [0, a]  } 

In this definition we have adopted the usual convention which attributes 
the value + o0 to the infimum of the empty set. 

Let g be a positive function with bounded variation defined on the 
interval [1/2, 1] with integral 1. We will consider the probability space 
([1/2, 1], N, g dx), where N denotes the Borel a-field. The entrance times 
defined above are random variables in this probability space. From now on 
we will always choose the initial condition according to the probability 
measure g(x) dx. 

From now on we will only take limits when a goes to 0 in the se t / .  
This restriction will avoid boring and inessential difficulties in the text. The 
extension of the results when this restriction is eliminated is done in a 
standard way. 

Main Theorem.  There is a positive function /~a which does not 
depend on g such that the sequence of normalized stopping times T~/~2 ~ 
converges in law to a mean-one homogeneous Poisson point process on 

+ w h e n a ~ 0 i n t h e s e t L  

Theorem 5 below will give a more precise estimate for the number/?a- 
In the statement of thne above theorem and in what follows when no 

confusion is possible we will not mention the argument of the random 
variables. From now on we will most of the time not mention the fact that 
the limit a'~ 0 is taken in the set L 

For definitions and fundamental results on Poisson point processes we 
refer to ref. 12. 

3. T H E  I N D U C E D  M A P  

The main tool in the proof of the Theorem is the so-called induced 
map (on the interval ] 1/2, 1 ]), which is defined as follows. First of all we 
observe that the integer-valued function U defined above satisfies 

g(x) = inf{n > O: f ' ( x )  e ] 1/2, 1 ] } 
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This is the number of steps the trajectory starting form x in ] 1/2, 1 ] takes 
to return to this interval. Tile induced map F on the interval ]1/2, 1] is 
now defined by 

g(x) =fu~X)(x) 

This induced map turns out to have much better expanding properties 
than f In the following propositions we summarize those properties which 
will be used in the proof of the main theorem. 

Proposition 1. 

(1.1) There exists a decreasing sequence ( I k ) ~  of closed intervals 
whose interiors are disjoint, whose union is the interval 
]1/2, 1], and for every integer k, F(Ik)= [1/2, l] .  

(l.2) F i s  C 3 on each closed interval Ik, and there is a number p > 1 
such that for any k 

IFj, l>p 

We refer to ref. 2 for a proof of this proposition, 
We will denote by sJ the partition of the interval [1/2, 1 ] defined by 

the sequence I k. The result (1.1) means that the partition so' is Markov. 
We will denote by dk the refined partition 

k 

sC'k = V F - l d  
l = 0  

Proposition 2. 
(2.1) F has a unique invariant ergodic, absolutely continuous 

probability measure #. Moreover, the logarithm of its density h 
has bounded variation. 

(2.2) The dynamical system defined by F and # is uniformly mixing. 
Moreover, the following stronger property holds. There is a 
positive constant C and a positive number 0 < 1 such that for 
any positive integers k and n and for any measurable set B 

]#(A~F -n ~-~(B)) #(B) 
sup ~< C0"#(B) 

A~'k #(A) 

Proof. We refer to ref. 17 for a proof of (2.1). For (2.2), we first 
observe that the map F has the following property of decay of correlations. 
There is a positive constant C~ and a positive number 0 < 1 such that for 
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any function g~ of bounded variation and any integrable function g2, we 
have for any integer m 

fglg2~ 

where Var(gl)  is the variation of the function g~. This is a standard conse- 
quence of the material contained in ref. 17 using the techniques of ref. 9. 

Let A be a atom of the partition dk and B a measurable set. We can 
write 

#(Amf -n--k l(B))= f )~A)~BoF"+k+]hdx 

Since h is bounded away from zero by (2.1), by the elementary properties 
of the transfer operator this is equal to 

1 pk+ 
f -h l(ZAh)Zs~ 

If we take gl as pk+ ~(ZAh)/h and g2--ZB, we can apply formula (D.C.) to 
get 

#(A nF-~-k-#(A) ~(B)) #(B) <~ CO~#(B)[Var(g~) +#(A)] 

We now have to get an upper bound for V ar(gl). Since A is an atom of 
the partition dk, F k+ 1 is a diffeomorphism from A to [1/2, 1]. Call ~ its 
inverse, which is a diffeomorphism from [1/2, 1] to A. It is easy to verify 
that 

ho~(x) 
g l ( x ) -  ]Fk+VoO(x) ] h(x) 

It is now straightforward to estimate the variation of gl,  and the proposi- 
tion follows using the bound 

sup IFk+Vot/;(x)[-l ~(9(1)#(A) 
x ~  [ 1 / 2 , 1 ]  

From now on we will denote by ~ the a-algebra generated by the 
partition dk. We remark that the above proposition also holds if we 
replace the atoms of ~r by the measurable sets in 4 .  
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We recall that a positive integer-valued function ~ is called a stopped 
time with respect to the sequence of a-algebras ~ ,  k = 0 ,  1,..., if the set 
{~ = j} belongs to ~ for all nonnegative integer j. As usual we will denote 
by ~ the a-algebra of all the measurable sets B such that Bc~ { z = j }  
belongs to ~ for any nonnegative integer j. 

The next corollary extends the mixing property (2.2) to stopping 
times. 

C o r o l l a r y  3. Let ~ be a stopping time with respect to the sequence 
of a-algebras (o~). Then for any measurable set B and for any integer n we 
have 

sup t~(A :~F . . . .  I(B)) #(B) <<. CO'#(B) 
~.:~ #(A) 

Proof. Let (Dk) be the partition associated to the stopping time 
and defined by 

D k = {v = k} 

For any set A belonging to ~ we have by definition 

/~(Ac~F .... I(B))= ~. t~(A~F k .-,(B)c~Dk) 
k = 0  

We now apply Proposition 2 to each term of the sum and we get 

kl(Ac~F . . . . .  l(B))<~(l +CO') ~ /x(A~:~nk)/~(B) 
k = 0  

= (1 + CO")/~(A) p(B) 

The lower bound is obtained in a similar way and this proves the proposition. 

Proposition 4. There is a positive constant C > 1 such that for any 
positive number a smaller than 1 we have 

a/C <<,p{ U> i/a} ~ Ca 

Proof. From our hypothesis on f it follows (e) that F satisfies the 
following uniform distortion property: 

JF"(x)l 
sup - - <  oo 

.re [-1/2,1] F'2(x) 

822/72/3-4-4 
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This implies that the density of the invariant probability measure /~ is 
bounded as well as its inverse. On the other hand, it follows from 
LemmaA2 in ref. 4 that the set {U> l/a} is an interval with length of 
order a and this finishes the proof. 

Remark. This immediately implies that the positive function U is not 
integrable with respect to /x. This is reminiscent of the null recurrent 
situation for Markov chains. In particular this implies that the nontrivial 
invariant measure of the map f is not finite. We refer to ref. 6 for the 
piecewise affine case, where the analogy with null recurrent Markov chains 
is explicit. 

4. A PRIORI ESTIMATES 

We first introduce some additional notation. For x in the interval 
]1/2, 1], we will denote by z~(x) the time of the kth visit to the interval 
U- l ( [0 ,  a] )  of the orbit of x under the induced map F. In other words, 

zl~(x) = inf{j ~> 0: Uo FJ(x) >~ 1/a} 
and recursively 

k +  I ( X  ) = in f{ j>  r~(x): U FJ(x) >7 1/a} ~'a o 

We remark that all these functions are stopping time; moreover, the 
ergodicity of/x implies that they are almost surely finite. 

With this definition we can rewrite T~ as 

"Cka - 1 
k T . = I +  Z U~ (4.1) 

j - 0  

with the usual convention that the sum is zero if the range is empty. 
We also define the integer-valued random variable N,, which counts 

the number of returns of the path starting at x to the interval [-1/2, 1] until 
time t (a positive real number). It is given by 

N,(x)=sup {j>~O; ~ UoFl(x)<~ t} 
l = O  

We define the time scale flu by 

/ ~ = m i n { n e ~ : # {  ' n}<<.e ~ T,>~ } (4.2) 

where /x is the absolutely continuous probability invariant under F. The 
ergodicity of/x imply that ft, is finite and well defined. 

The first step in the proof of the main Theorem is the following. 
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T h e o r e m  5. 
holds: 

For  any positive real numbers t, the following limit 

lim - 1 i t o 0+ r o > t } : e -  
a ~ I  

Moreover, 

lira //j~ f TI~ d# = 1 
a ~ O  + 

a E 1  

The main idea of the proof is the following. The time needed to 
perform the first visit to the interval [0, a]  is much larger than the typical 
mixing time. This will imply the factorization property announced in 
Theorem 5. Of course, this will be exact only in an asymptotic sense and 
the result will be nontrivial if one uses a suitable time scale. 

In order to complete this program we first derive an a priori bound 
for T]. 

Propos i t ion  6. There exists an increasing positive function L 
defined on I such that 

lim a L ( a ) =  + ~  
a ~ 0  

and 

I . e m m a  7. There exists an increasing 
defined on the integers such that 

lira sup#{s~<T x < s + L ( a ) } = O  
a ~ O  s>~0  

In order to prove this we first need two auxiliary lemmata. 

integer-valued 

lira l(r) - - ~ - - - O 0  
r ~ o o  ~" 

function l 

and 

lira /z{N2t(~)/> r - 1 } = 0 
r ~ o o  

ProoL By definition we have 

{ X 2 t ( r ) ~ > r - 1 } = { U + U o F +  . . .  + U o F - l  <.Zl(r)} 
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We now consider the Laplace transform of the random variable 

r - - 1  

Wr = ~ U o F i 
i=o 

From Markov's inequality we have for t ~ [0, 1 [ 

#(Wr<l)<~t-t  t tWrd# 

Let m and s be two integers chosen below such that ms <~ r. Let IT" r be the 
function defined by 

S - - 1  

17Vr= ~ UoF lm 
l~0 

We have obviously 

m 1 

Wr>/ ~ IZVr~ j 
j=0 

Using recursively H61der's inequality, we obtain 

f t W r d ~ ( f f  t m~V'r d#)l/m(f1 m/(m-1)~-r~-llly~r~ d~)m-l/m~ ... ~ f t  m~Vr d~ 

Using the mixing property expressed in Proposition 2, in the last term we 
obtain the upper bound 

( )s, 
f t wr d# <~ CO m-I + f t mU d#  4 e (s- 1)[--g(tm)+ COrn-l] 

where g(t) is the function 

g(t) = 1-- f t U d# 

As we have already remarked, Proposition 4 implies the nonintegrability of 
the function U. Therefore the function g(t) satisfies limt~ 1_ g(t)= 0 and 
lim,~ 1_ g(t)/(1 - t) = +oe. 

This suggests to call t = 1 -  u, with u > 0 small, and to define a ( u ) -  
g ( 1 -  u)/u. A standard straightforward computation leads to the equality 

f t u d # = l + ( 1 - t  ') ~ p{U>~n}t" 
n=l 
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and therefore to the formula  

1 

n = l  

F r o m  this it is obvious  that  ~ is a decreasing function of u. 
Using the inequalities 

1-u>>.e-" ,2 and ( 1 - u ) m ~ l - m u + m 2 u  2 

as well as the monoton ic i ty  of g, we get 

#( W r ~< 1 ) ~< exp {u[l  + lu - a(rnu - m2u 2) m(s - 1 )(1 - mu)] + C ( s -  1 )0 m } 

Let us take u = l/r, m = [( log r)2],  s = [ r / ( log r)2],  and finally 

l(r) = [r{o-((log r)2/r) } 1/2] 

where [ . ]  denotes  the integer part.  
By a direct e lementary  computa t ion ,  one can check that  with this 

choice the result follows. 
We remark  that  it is easy also to prove  that  the positive ratio 

- c r (u ) / log  u is bounded  away f rom zero and infinity when u--*0 +. 

L e m m a  8. Let C be the constant  which appears  in Proposi t ion  2; 
then: 

(ii) Moreover ,  for any positive integer k, i~ {r~, ~ k}  <~ k#{ U >>. 1/a }. 

Proof. We first observe that  

n =  1 

Since # { v ~ <  oo = 1, using the 

n 1 

l i u ~ l / ~ } ~  ] 1 lo-< 1/~} o F  l 
/ = 0  

uniform mixing proper ty  given by 
Propos i t ion  2 as well as the invariance of #, we get 

n = 0  

F r o m  this we obta in  (i) immediately.  
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Inequality (ii) is also a standard consequence of the invariance of p. 
Indeed 

k n - - I  

l{Fo<-<k}=lfu>~l/a}+ ~ l{u~>l/a}~ H l{v<~/a} ~ 
n = l  l = 0  

k 

l{u>~l/a} + ~ l{u>~l/a} ~ 
n ~ l  

Integrating with respect to #, the result follows. 
We remark that using Markov's inequality and the above estimate (i), 

we get the lower bound 

for any positive integer k. 

C 
1/a} 

Proof of Proposition 6. For any fixed a and s > l/a, we define a 
partition (Ak) by 

A~ = {x: N,_ 1/a(x) = k} 

We denote by r(a) a function to be defined below. Using the partition (A~), 
we get 

[ l {S  < Tla < S ~'- l(r(a))} 

<<. ~ p(Ak c~ F k + 2(B ch D)) + ~ p(A k c~ F k + 2(B ch DC)) 
k k 

where 

and 

B= U ({Zla<~i} Ch {N,(r(a))+l/a>/i}) 
i=O 

D = {Nl ( r (a ) )+  1/a<~r(a)} 

We now observe that 

B c ~ D c  {~la >~ r(a)} 

Therefore using Proposition 2, we get 

#(AknF~+2(Bc~D))<- C~p(Ak)P({zla>~r(a)}) 
k k 

= cu{ lo >i r(a)} 
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We also have from Proposition 2 

#(Ak c~ F k + 2(B c~ De)) < C#(D C) 
k 

This finally gives the upper bound 

p{s  <~ T1~ < s + l(r(a))} <~ #{ U>>. 1/a} r(a) + #{N21(r(a)) >1 r(a)} 

We now choose the function r(a) in such a way that both probabilities 
in the above upper bound vanish to 0 when a ~ 0 +. 

We define the function 

~o(z) = inf l (y)/y 
y>~z 

This is a nondecreasing function diverging with z. Therefore there exists a 
nonincreasing function r(a) satisfying 

a=r- ~ 
Note that r ( a ) ~  oe, and a r ( a ) ~  O when a ~ 0 § By Proposition 4 we have 
#{U>~l /a}~ (9 (1 )a .  Now the result follows from Lemmata 7 and 8 by 
choosing L(a) = l(r(a)). 

Corollary 9. We have 

lim aria = + 
a ~ o ( 3  

Proof. We first remark that by definition 

#{T'a<fla } > 1 - - e - '  

The second part of Proposition 6 implies that for a small enough, we have 
L(a) <~ flu. The conclusion follows from the first part of this proposition. 

5. PROOF OF THEOREM 5 

Let Ga(t) be the function defined by 

Ga(t) = #{fl~'Tlo >t t} 

We are going to prove that for any pair of positive real numbers s and t, 
the following asymptotic factorization property holds: 

lim (Ga(t + s) - Ga(t) G~(s)) = 0 
a ~ O  + 
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Among distribution functions, this factorization property is satisfied only 
by exponential functions or by the trivial constant functions 0 or 1. 

We introduce again a partition (A~), which is now defined by 

Ak= {x: N~. t (x )=k}  

Let m = [ {aL(a)} 1/2]; this is a positive function of a diverging when a tends 
to 0 and such that aL(a)/m also diverges. It will be useful to introduce also 
the set B given by 

B={Z 'a<.m+l  } 

It is easy to verify that for any integer k 

( { Tla> fla t } c~ { Tlaorm+k> f l a s - m  } c~ Fk(BC))c~ Ak 

and also 

{Tla>fla(s+ t)} c~A k 

= ( { r l o > ~ a  t } (.~ { ~ l  r,m+k l a ~  > f l a s - ( m + l ) / a } u { Z l a o F k < ~ m + l } ) c ~ A k  

Therefore, summing the measures of these sets over k, we get 

(l~({Tlo> flat} ~ A ~  {Tlaorm+k> f l a s -m} ) -# (Bc~Ak) )<~  Go(t + s ) 
k 

and also 

Ga(t + s) 

~< ~#({  Tla > flot}c~Akc~ {TI~oF m+/~ > fla s -  (m + 1)/a} w {zl. oF k <~m + l}) 
k 

W e  remark that B c {T~ ~< (m + 1)/a}. Using the decay of correlations 
given by Proposition 3, we obtain 

Z # ( { T I o > / 3 o t } c ~ A ~  TlooFm+k>flos-m})  
k 

( l  - -  CO m-1  ) ]~{ Via > ~ a S - m }  2 l~({Tla > ~at } (''3 Ak)  
k 

>~ (1 - CO m-I ) ]~{ Tla ) fla S } ]J{ T1. > flat} 

Therefore by Proposition 6 we have 

lim /~(B) = 0  
~r + 
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Since rn diverges when a tends to 0, this implies that 

lira (Ga(t + s) - Ga(t) G~(s)) >~ 0 
a ~ O  + 

Similarly, we obtain the upper bound 

a~( t+s)<~( l  +CO m 1 ) G a ( t ) # { r l o > f l a s _ ( m +  l)/a} 

Since (rn + 1)/aL(a) tends to 0 with a, Proposition 6 implies 

lira (# { T~ > f l a s -  (m + 1)/a} - G~(s) ) = 0 
a~-+ O + 

which concludes the proof of the factorization property. 
Now we must prove that the functions G~ converge to a nontrivial 

limit. We first remark that by definition we have 

#{r~>Jf la -  1} > e  -I  >~#{T~>~fla} 

Therefore it follows from Proposition 6 that 

lim Ga(1)= e -1 
a ~ 0  + 

Using the factorization property, we conclude that for any positive rational 
number t, we have 

lim G~(t) = e -~ 
a ~ O  + 

Since the exponential is a continuous function, this concludes the proof of 
the convergence in law of fla-1Ta .1 

We now turn to the proof of the second part of Theorem 5. We first 
remark that by an integration by parts followed by a change of variables 
we get 

f fo B2' r~d#= ao(t) dt 

Since G~(t) converges to e ', the result will follow if we can use the 
Lebesgue dominated convergence theorem. We have proven above that for 
any t > 1 

a a ( t ) ~ a a ( t - -  1)(1 + c o m - 1 ) # { T l a > f l a - ( m +  1)/a} 

Proposition 6 implies that when a tends to 0, the quantity 

# { T~ > fla - (m + 1)/a} 
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converges to e ~. Since m diverges with a, we  conclude that for a small 
enough we have 

Ga(t) <~ e -~Et~ - 1)12 

and this concludes the proof of the theorem. 

6. P R O O F  OF T H E  M A I N  T H E O R E M  

We first consider the case in which the starting point is chosen 
according to the invariant measure #. 

theorem 10. For any positive integer n and any sequence of 
positive real numbers s~, s2 .... the following holds: 

lira # ( T l a > f a s l ,  T Z -  Tla>3aS2,... , T ~ -  T~a ' > 3 ~ s . ) =  ( ]  e ~J 
a~O+ j ~ l  

ProoL The proof  is by induction. The case n =  1 was proven in 
Theorem 5. The proof  of the induction step follows essentially the same 
scheme as the proof  of Theorem 5. The new point is that now we must 
control the length of the first return time to the interval [1/2, 1 ] after each 
entrance in the interval ]0, a] .  

Let us call Dn the set 

D . =  {Tlo> fl~sl, T 2 -  Tla> fiaS2 ..... T ~ -  T n - 1  >flaSh} 

and let us assume that the result holds up to the integer n. We are now 
going to prove it for n + 1. 

We observe that 

n T~ D.+,  (D.c~{TlaoF~o+l+UoFo>f l~s.+ l } )  

In order to control the probability of this set, we will find a larger and a 
small set with comparable measures. The set Dn+~ is contained in the 
union of the two sets 

D,  c~ { Uo F~: <~ mla } e~ { Tlao F ~"~ + I > flaS, + l -- m/a } 

and 

Since 

{ U o F ~2 > m/a } 

{ 'oo r ' :  +'  < m} { m7 oF':+ <  la} 
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using 

m/a < fic~sn+ l - m/a 

for a small enough, we conclude that the set 

D. n { Uo F~: <~ m/a } c~ { rla o F ": + ' >fl~s.+l--m/a} 

is contained in the set 

D . n  {uor~"~<~rn/a} ~ {TlaoF~;+m>fl~sn+,-2m/a} 

We are now ready to use the mixing property to get an upper bound for 
the measure of the above set. Using Corollary 3, we get 

T~ n 
#((D. n { Uo F . <~ m/a} n { T I oF a + m  ) f l a S n +  l - -  2mla} )) 

~< (1 + CO") #(D. n {Uog~<~m/a}) #({T~a > f i j . + ~  -2m/a})  

~< (1 + CO m) #(D.) #({ Ta~ > fl~s. +, - 2m/a} ) 

Using the induction hypothesis, Theorem5, and Proposition6, we 
conclude that the above number converges to 

f l  6_0 
j=l  

We now prove that the remaining term in the upper bound 

# ( U  (A,c~({UoF';>m/a}))  

converges to O. We do that by introducing the partition (A~) defined in the 
following way: 

A~= {v]=k}  

Since 
t n A~n {UoF~ 

= A k n  { UoFk>m/a} ~ {T~>k-- 1} n {UoFk>m/a} 

we can use Proposition 2 to conclude that 

#(U(Akc~({U~ ~ #{r .  ~ > k - l }  
k ~ n  

C#{U>m/a} f r~ d~ 
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and 

#((0 {zl~ ~ F'"+ ~ ~<m}))~< C#({z'~ ~< m}) 

As before, the first quantity converges to 

n+l 
H e_ss 

j=0 

and the second one converges to zero by the second part of Lemma 8. This 
concludes the proof of Theorem 10. 

We now conclude the proof of the Main Theorem. In order to do this, 
it is enough to extend Theorem 10 to the nonequilibrium situation. In other 

and the first part of Lemma 8, we finally get 

# UoF >5- 

This last quantity tends to zero by Proposition 4. 
We now prove a lower bound for the measure of D,  + ,. By definition, 

Uo F ~ >>. 1/a. Therefore the set D , + ,  contains the set 

Dn ~ { 1 z"+ I T . o F  a >f lasn+l--1/a}  

We will consider the even smaller set 

D n ~  ,(T l_a o __Fz:+m> f i a S n + , - m / a }  ~ {zla o F ~:+1 >m }  

We now have the lower bound 

p((D,,m { T'~o F#~+m > flas.+ 1 - m/a} c~ {'~lao F':  + l > m}  ) ) 

>~#((D.c~ {TlaoF~"~+'~>flas.+ ~ - m / a } ) ) - p ( ( { ~ o r  4~+~ ~<m})) 

Using in both terms the mixing property given in Corollary 3, we get 

#((D.  c~ {Talo F*: +"  > fl.s.+ 1 - m / a } ) )  

~> ( 1  - CO '~) p( D . )  #( { T~a > fioS.+ m - re~a}) 
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words, for any positive function g of bounded variation and integral 1 we 
have to prove that for any integer n 

lira ( # ( Dn) - f Zo . ( x ) g ( x ) dx )=O 
a ~ O  + 

where the set Dn is given by 

Dn= {T'a> fiasl, T 2 -  Tla> fias2,..., T ~ -  T~ -1 >flaG} 

We first remark that 

dx 

is positive and bounded above by 

f )~{Tle<L(a)} g(x) dx~ Ilgtl ~ Pt l/hll ~ f Z{TI~L(a)}h(x) dx 

By Proposition 6 this last quantity converges to 0 with a. Therefore it is 
enough to prove that 

lim (lt(Dn)-- f ZD~(X) Z{T~>~L(a)} g(x) dx)=O 
a ~ O  + 

The proof now follows exactly the pattern of the proof of Theorem 5. We 
start by indicating how to treat the case n = l with s~ =s.  We introduce 
again a partition (A~) which is now defined by 

A~ = {x: NL(a)(X)=k} 

It will be useful to introduce also the set B given by 

B =  1 { r ~ < m + l }  

where m = [{aL(a)} 1/2]. 
It is easy to verify that for any integer k 

({ T~> L(a) } m { Tlo Fm+e > f los-m} n BC)c~ Ak c { Tl > fl~s} c~ A~ 

and also 

{ Tlo> fi~s} ~Ak  = ( { T~ > L(a)} ~ { Tl, oF~+k> fias - (m + 1)/a} )c~A k 
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Now we follow step by step what we did to prove Theorem 5. The 
procedure is the same for a general integer n. This concludes the proof of 
the Main Theorem. 
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