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Statistics of Close Visits to the Indifferent
Fixed Point of an Interval Map
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We study a dynamical system defined by a map of the interval [0, 1] which has
0 as an indifferent fixed point but is otherwise expanding. We prove that the
sequence of successive entrance times in a small neighborhood [0, a] converges
in law when suitably normalized to a homogeneous Poisson point process.
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1. INTRODUCTION

In this paper we study a dynamical system defined by a map of the interval
[0, 17 which has 0 as an indifferent (marginal) fixed point but is otherwise
expanding. We allow the system to start with any absolutely continuous
initial distribution with density of bounded variation whose support is
away from 0.

We prove that the sequence of successive entrance times in a small
neighborhood [0, 2] converges in law (in distribution) when suitably
normalized to a homogeneous Poisson point process. The normalization
does not depend on the initial distribution.

The prototype of this family of maps is the transformation

x/(1—x) for x<1/2

f(x)z{zx—1 for x>1/2
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460 Collet and Galves

Systems of this type were suggested as models of temporal intermittence by
Pomeau and Manneville.!¥ One can distinguish a laminar regime when
the point x is near the indifferent (marginal) fixed point (x=0) and a
turbulent regime when the point x is away from this fixed point. In the
laminar regime the time evolution is rather regular and slow, while in the
turbulent regime we have instability and a sensitive dependence to initial
conditions. The global time evolution of a typical trajectory is composed of
laminar phases separated by turbulent bursts.

The main point about such systems is that although the SRB measure
is the Dirac measure at the indifferent fixed point x=0,"" the dynamics
displays this interesting intermittence phenomenon. In other words, for any
continuous function g and almost every initial condition x with respect to
the Lebesgue measure, the asymptotic time average is g(0), i.e.,

n—1

1
lim — Y. &(/"(x))=¢(0)
n— o0 ]= [}

The turbulent bursts, on the other hand, are associated with another
absolutely continuous invariant measure y which is nonnormalizable.>*19
If the function g e C° has a support which does not contain the indifferent
fixed point x =0, we have

n—1

¥ s("(x) 2, fg dp

Jj=0

logn

This behavior is related to the divergence of the expectation of the return
times of the orbit, and to the poor mixing properties of this system. This
is the main technical difficulty of the present paper.

In this picture our result says that the starting points of long laminar
phases are Poissonian distributed. This can be illustrated as follows. Fix a
small number a >0, and on a (discrete) tike (half) line put a dot at the
instants # where the state x, of the system is in the interval ]0, a]. For a
initial condition distributed according to the normalized Lebesgue measure
on a closed interval which does not contain zero, one generates by this
procedure a point process on the real half-line. Our main result states that
one can find a normalization S, (diverging when a0) of the time scale
such that the renormalized point process converges in law (in distribution)
to a Poisson point process.

Let us discuss briefly the physical implications of this result. Since the
statistics of Poisson point processes are so peculiar, this precise information
should provide a sensitive test of the adequacy of the model. Moreover,
the fact that the entrance times have independent exponential laws is a
rigorous way of expressing the unpredictability of these events.
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The fact that Poisson point processes appear as asymptotic laws for
a broad class of dynamical situations seems to have attracted a lot of
fishermen recently. As far as we know, the first result in this context is
due to Doeblin.”’ In the context of finite Markov chains, the first result is
due to Bellman and Harris® (see also ref. 13 and the interesting book by
Aldous™). In the context of Axiom A dynamical systems the question was
treated recently in several papers by Sinai,*® Hirata,® and ourselves.®
The present paper extends previous results obtained in ref. 6 for piecewise
affine maps.

Even though the techniques are quite different, our method is similar
to the one developed in the so-called pathwise approach to metastability
and we refer to the survey paper by Schonmann® for a recent review of
this subject.

The paper is organized in the following way. The class of dynamical
systems we study is defined in the next section, which also contains the
statement of the Main Theorem. Section 3 introduces the induced map
which is the main tool of our proof and recalls some basic related results.
Section 4 presents the basic a priori estimates about the first entrance time.
Finally, Sections 5 and 6 develop the proof of the Main Theorem.

2. MODEL AND MAIN RESULT

Let f be the map of the unit interval [0, 17 defined in the folowing
way:

(i) f(0)=0.

(ii) f is monotone C* on the intervals 11/2, I[ and 10, 1/2[ and
satisfies f(]0, 1/2[)=/(11/2,1[}= 10, 1.

(iii) The slope of f is larger than one on ]0, 1/2[ and larger (in
absolute value) than a positive number p6>1 on JI1/2, 1[.
Moreover, f'(0)=1 and f"(0)>0.

Note that it is easy to extend the map on each closed interval [1/2, 1]
and [0, 1/2].

The interation of the map f defines a dynamical system system of the
interval except for the countable set of preimages of the discontinuity point
1/2. We will only consider below absolutely continuous probability
measures for the distribution of the initial condition. We will denote as
usual by f” the nth iterate of the map f.

Let 7=(x,) be the decreasing sequence of preimages of 1/2 defined
recursively by x,=1/2 and for n>0

x, =inf{x|f(x)=x, .}
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We also define an integer-valued function U by

1 if f(x)e]l/2,1]
Ux)= .
n+1 lf f(x)e]xnsxnfl[
We will study the sequence of entrance times into a small
neighborhood [0, a] of the indifferent fixed point x =0. More precisely, for
any x belonging to [1/2, 1] we define

Ti(x)=inf{n>0: f*(x)e [0, a]}
and the sequence T7(x), for j=2,3,.., by
T/(x)=inf{n> T/~ (x)+ Uo fTe ‘@~ x)—1: f"(x) e [0, a]}

In this definition we have adopted the usual convention which attributes
the value + oo to the infimum of the empty set.

Let g be a positive function with bounded variation defined on the
interval [1/2,1] with integral 1. We will consider the probability space
([1/2, 17, 4, g dx), where # denotes the Borel o-field. The entrance times
defined above are random variables in this probability space. From now on
we will always choose the initial condition according to the probability
measure g(x) dx.

From now on we will only take limits when & goes to O in the set I
This restriction will avoid boring and inessential difficulties in the text. The
extension of the results when this restriction is eliminated is done in a
standard way.

Main Theorem. There is a positive function B, which does not
depend on g such that the sequence of normalized stopping times T !
converges in law to a mean-one homogeneous Poisson point process on
R* when aNO0 in the set I

Theorem 5 below will give a more precise estimate for the number §,,.

In the statement of thne above theorem and in what follows when no
confusion is possible we will not mention the argument of the random
variables. From now on we will most of the time not mention the fact that
the limit @0 is taken in the set I.

For definitions and fundamental results on Poisson point processes we
refer to ref. 12.

3. THE INDUCED MAP

The main tool in the proof of the Theorem is the so-called induced
map (on the interval ]1/2, 1), which is defined as follows. First of all we
observe that the integer-valued function U defined above satisfies

Ulx) =inf{n>0: f"(x)e ]1/2, 11}
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This is the number of steps the tréjectory starting form x in 1,2, 1] takes
to return to this interval. The induced map F on the interval ]1/2, 17 is
now defined by

F(x) = ()

This induced map turns out to have much better expanding properties
than f. In the following propositions we summarize those properties which
will be used in the proof of the main theorem.

Proposition 1.

{1.1) There exists a decreasing sequence (), ., of closed intervals
whose interiors are disjoint, whose union is the interval
11/2, 11, and for every integer k, F(I,)=1[1/2,1].

(1.2) Fis C® on each closed interval I, and there is a number p > 1
such that for any &

[Epl>p

We refer to ref. 2 for a proof of this proposition.

We will denote by .of the partition of the interval [1/2, 1] defined by
the sequence I,. The result (1.1) means that the partition .« is Markov.
We will denote by o7, the refined partition

k
A=\ F'ol

=0

Proposition 2.

(2.1) F has a unique invariant ergodic, absolutely continuous
probability measure y. Moreover, the logarithm of its density 4
has bounded variation.

(2.2) The dynamical system defined by F and g is uniformly mixing.
Moreover, the following stronger property holds. There is a
positive constant C and a positive number 6 <1 such that for
any positive integers k and » and for any measurable set B

—n—k—1
sup pAnt B) u(B)| < CoO"u(B)
A e ﬂ(A)

Proof. We refer to ref. 17 for a proof of (2.1). For (2.2), we first
observe that the map F has the following property of decay of correlations.
There is a positive constant C, and a positive number 8 < 1 such that for
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any function g, of bounded variation and any integrable function g,, we
have for any integer m

lfglgzoF’" du—fgl dufgzdu’

<C,0m [ gl dy [Var(g1)+ 12 du] (D.C)

where Var(g,) is the variation of the function g,. This is a standard conse-
quence of the material contained in ref. 17 using the techniques of ref. 9.

Let 4 be a atom of the partition ./, and B a measurable set. We can
write

HAAF" 5 1(B)) = [ fapo '

Since 4 is bounded away from zero by (2.1), by the elementary properties
of the transfer operator this is equal to

1
[ 7 P uahyse Foh

If we take g, as P**1(x,h)/h and g, = x5, we can apply formula (D.C.) to
get

w(4)

We now have to get an upper bound for Var(g,). Since 4 is an atom of
the partition .o/, F**' is a diffeomorphism from 4 to [1/2, 1]. Call ¥ its
inverse, which is a diffeomorphism from [1/2, 1] to A. It is easy to verify
that

Iy(AnF_"‘ - (B))_#(B)‘SCQ"M(B)[Var(gl)-i-u(A)]

hoy(x)
|F* oy (x)] h(x)

g(x)=

It is now straightforward to estimate the variation of g,, and the proposi-
tion follows using the bound

sup |F* ey (x)] T < O(1) u(A)

xe[1/2,1]

From now on we will denote by &, the g-algebra generated by the
partition &4. We remark that the above proposition also holds if we
replace the atoms of .7, by the measurable sets in Z,.
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We recall that a positive integer-valued function t is called a stopped
time with respect to the sequence of g-algebras %, k=0, 1,.., if the set
{r=j} belongs to Z for all nonnegative integer j. As usual we will denote
by % the c-algebra of all the measurable sets B such that Bn {r=}
belongs to % for any nonnegative integer j.

The next corollary extends the mixing property (2.2) to stopping
times.

Corollary 3. Let 7 be a stopping time with respect to the sequence
of g-algebras (%#,). Then for any measurable set B and for any integer n we
have

up [HADE " (B)
Ae F: :u(A)

— u(B)| < CO"u(B)

Proof. Let (D) be the partition associated to the stopping time 7
and defined by

Dkz{fzk}

For any set 4 belonging to &, we have by definition

WAAF " ""Y(B))= Z (AnF~*="=Y(B)~D,)

We now apply Proposition 2 to each term of the sum and we get
MANFT""YB)Y<(1+C0") ). w(AnnD,) u(B)
k=0

= (1+C0") u(4) u(B)

The lower bound is obtained in a similar way and this proves the proposition.

Proposition 4. There is a positive constant C > 1 such that for any
positive number a smaller than 1 we have

a/C<pu{U>1/a} < Ca

Proof. From our hypothesis on f it follows'® that F satisfies the
following uniform distortion property:

LF"(x)]

xe[1/2,1] F,Z(x)

822/72/3-4-4
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This implies that the density of the invariant probability measure u is
bounded as well as its inverse. On the other hand, it follows from
Lemma A2 in ref. 4 that the set {U>1/a} is an interval with length of
order a and this finishes the proof.

Remark. This immediately implies that the positive function U is not
integrable with respect to p. This is reminiscent of the null recurrent
situation for Markov chains. In particular this implies that the nontrivial
invariant measure of the map f is not finite. We refer to ref. 6 for the
piecewise affine case, where the analogy with null recurrent Markov chains
is explicit.

4. A PRIOR! ESTIMATES

We first introduce some additional notation. For x in the interval
11/2, 1], we will denote by t%(x) the time of the kth visit to the interval
U~([0, a]) of the orbit of x under the induced map F. In other words,

T (x)=inf{j>0: Us F/(x) > 1/a}
and recursively

et (x) =inf{j>th(x): U = F/(x) > 1/a}

We remark that all these functions are stopping time; moreover, the
ergodicity of p implies that they are almost surely finite.
With this definition we can rewrite TX as
s
Ti=14 )Y U-F (4.1)

Jj=0

with the usual convention that the sum is zero if the range is empty.

We also define the integer-valued random variable N,, which counts
the number of returns of the path starting at x to the interval [1/2, 1] until
time 7z (a positive real number). It is given by

j
N,(x)=sup {j}O; Y UoF[(x)st}»
=0
We define the time scale f, by
B,=min{neN: u{T:2n}<e '} (4.2)

where u is the absolutely continuous probability invariant under F. The
ergodicity of u imply that f, is finite and well defined.
The first step in the proof of the main Theorem is the following.
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Theorem 5. For any positive real numbers ¢, the following limit
holds:

lim p{B,'Ti>t}=e¢""'
a—0*

ael

Moreover,

lim p; [ Thdu=1
a— 0t

ael

The main idea of the proof is the following. The time needed to
perform the first visit to the interval [0, a] is much larger than the typical
mixing time. This will imply the factorization property announced in
Theorem 5. Of course, this will be exact only in an asymptotic sense and
the result will be nontrivial if one uses a suitable time scale.

In order to complete this program we first derive an a priori bound
for T}.

Proposition 6. There exists an increasing positive function L
defined on [ such that

lim al(a)= +

a0
and

lim sup u{s<T})<s+L(a)} =0

a=0 550

In order to prove this we first need two auxiliary lemmata.

Lemma 7. There exists an increasing integer-valued function /
defined on the integers such that

lim M=oo

row I

and

lim u{Ny,, =>r—1}=0

Proof. By definition we have

{NonZ2r—1}={U+UcF+ - + U F ' <2(r)}
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We now consider the Laplace transform of the random variable

r—1
W,=Y U-F'

i=0

From Markov’s inequality we have for 1 [0, 1[
uW, << [ 1 dy

Let m and s be two integers chosen below such that ms<r. Let W, be the
function defined by

We have obviously
m—1 - )
W,z Y W,oF
j=0

Using recursively Hélder’s inequality, we obtain

m—1/m

_ 1/m o . _
JIW’ d,u<<f th, dﬂ) (f tm/(mfl)Zjﬂl W,o FJ dﬂ) < - <jthr d/l

Using the mixing property expressed in Proposition 2, in the last term we
obtain the upper bound

s—1
J W dué(CBm” +J U dy) < els— DI—gm +com=1]
where g(¢) is the function
g(t)=1—JtUd,u
As we have already remarked, Proposition 4 implies the nonintegrability of
the function U. Therefore the function g(¢) satisfies lim,_, g(¢t)=0 and
lim,, g(t)/(1—1t)= +co.

This suggests to call 1=1—u, with #>0 small, and to define o(u) =
g(1 —u)/u. A standard straightforward computation leads to the equality

[tvdp=1+0~17 S w{Usn}r

n=1
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and therefore to the formula

ol(u) = i p{Uzn}(1—u)"!

n=1

From this it is obvious that ¢ is a decreasing function of u.
Using the inequalities

1—uze %  and (1—u)"<1—mu+m*®
as well as the monotonicity of g, we get
w(W, < 1)<exp{ull+ lu—o(mu—m*u®) m(s — 1)(1 —mu)] + C(s — 1)6™}
Let us take u=1/r, m= [(log r)*], s= [r/(log r)*], and finally
(r)=[r{a((log r)*/r)}"?]

where [ -] denotes the integer part.

By a direct elementary computation, one can check that with this
choice the result foilows.

We remark that it is easy also to prove that the positive ratio
—o(u)/log u is bounded away from zero and infinity when v - 07,

Lemma 8. Let C be the constant which appears in Proposition 2;
then:

(i) C'sp{Uz1/a}ftldu<C.
(ii) Moreover, for any positive integer k, u{tl <k} <kp{U=>=1/a}.

Proof. We first observe that

n—1

x
l{zj<ao}:1w>1/u}+ Z 1{U>1/a}°F’Z H 1{U<1/a}oF[
=0

n=1

Since u{r.<o}=1, using the uniform mixing property given by
Proposition 2 as well as the invariance of p, we get
C'<p{Uz1/a} ¥ p{r,zn}<C

n=0

From this we obtain (i) immediately.
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Inequality (ii) is also a standard consequence of the invariance of p.
Indeed

n—1

k
locny=lwsyagt 2 Yusya o F" [1 Lweyay o F
I=0

n=1
k
<1{U>1/a}+ z 1{U>1/a}an

n=1

Integrating with respect to u, the result follows.
We remark that using Markov’s inequality and the above estimate (i),
we get the lower bound

C

2k} ———
P‘{Ta } kﬂ{U?l/a}
for any positive integer k.

Proof of Proposition 6. For any fixed a and s> 1/a, we define a
partition (4;) by
Ae={x:N;_u(x)=k}

We denote by r(a) a function to be defined below. Using the partition (4,),
we get

{s<Th<s+1(r(a))}

<Y WA "FFP(BAD)) + Y w(A, N F* 3B~ D))
k k

where

o

B= U (oo <i} 0 {Nipiayy + 10 = 1))

i=0
and

D = {Nl(r(a))+ l/aSr(a)}

We now observe that
BnDc{z=ra)}
Therefore using Proposition 2, we get
T WA FHBAD) S C Y plde) wl (7> r(@)
k

=Cuft,=r(a)}



Indifferent Fixed Point 47

We also have from Proposition 2

Y A FET2(BN D)) < Cu(De)
k

This finally gives the upper bound
p{s< T <s+1Ur(a))} <p{U>1/a} r(a) + p{Noypa) = r(a)}

We now choose the function r(a) in such a way that both probabilities
in the above upper bound vanish to 0 when a—>0*.
We define the function
w(z) = inf [(y)/y
yzz
This is a nondecreasing function diverging with z. Therefore there exists a
nonincreasing function r(a) satisfying

“zﬁ {w(rl(a))}m

Note that r(a) - cc, and ar(a) - 0 when a - 0*. By Proposition 4 we have
p{U=1/a} <O(1)a. Now the result follows from Lemmata 7 and 8 by
choosing L(a)=Il(r(a)).

Corollary 9. We have

lim af,= +w

Proof. We first remark that by definition
w{Th<p,}>1—e"!

The second part of Proposition 6 implies that for ¢ small enough, we have
L(a) < B,. The conclusion follows from the first part of this proposition.

5. PROOF OF THEOREM 5
Let G,(¢) be the function defined by
G()=pu{B. ' To>1}

We are going to prove that for any pair of positive real numbers s and ¢,
the following asymptotic factorization property holds:

lin(‘)l+ (G(t+5)— G, (1) G,(s))=0



472 Collet and Galves

Among distribution functions, this factorization property is satisfied only
by exponential functions or by the trivial constant functions 0 or 1.
We introduce again a partition (A,), which is now defined by

Ap={x: Ny (x)=k}

Let m = [{aL(a)}"/*]; this is a positive function of a diverging when a tends
to 0 and such that al(a)/m also diverges. It will be useful to introduce also
the set B given by

B={1,<m+1}
It is easy to verify that for any integer k&
({Th> But} A {The F" %> s —m} 0 F5(B)) n 4,
c{T > B (s+1)} A,
and also
{Te>Bas+0)} A,
c({T,>Pt}n{The F"**> B s—(m+1)ja}u{tle FF<m+1})n 4,

Therefore, summing the measures of these sets over k, we get

Y (W({T2> Bt} O A A {The P75 > B s —m}) — u(B A Ay)) < G (1 +5)

k
and also
G (t+5)
SYU{Th> Bty AN {Tho F" > Bs— (m+ Dja}u{tlo Fr<m+1})
k

We remark that Bc {T.<(m+1)/a}. Using the decay of correlations
given by Proposition 3, we obtain

Su({T:> Bt} n A (T Fm > B s —m})

k
> (1= CO™ ) p{Th> Bos—m} Y u({TE> Bt} Ay)
k
>(1~COo" ) p{T,>Bus} u{T,>Put}
Therefore by Proposition 6 we have

lim u(B)=0

a— 0
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Since m diverges when a tends to 0, this implies that

lim (G,(t+s)— G,(t) G,(s))=0

a—-07*
Similarly, we obtain the upper bound
G (t+5)<(1+CO" NG (1) u{T:> s —(m+1)/a}
Since (m+ 1)/aL{a) tends to 0 with a, Proposition 6 implies

lim (u{T%>Bos = (m+ 1)fa} = G,(s) = 0

which concludes the proof of the factorization property.
Now we must prove that the functions G, converge to a nontrivial
limit. We first remark that by definition we have

Tz Ba—1}>e ' 2 pu{T,> .}
Therefore it follows from Proposition 6 that

lim G (1)=e
a0t

Using the factorization property, we conclude that for any positive rational
number ¢, we have

lim G,(t)=e""

a—0+

Since the exponential is a continuous function, this concludes the proof of
the convergence in law of 7 'T2.

We now turn to the proof of the second part of Theorem 5. We first
remark that by an integration by parts followed by a change of variables
we get

N Trdu= OoGat dt
Ba f o A fo (2)
Since G,(r) converges to e ', the result will follow if we can use the

Lebesgue dominated convergence theorem. We have proven above that for
any t>1

G()S G (1= 1)1+ CO™ ") p{T;> B, — (m+ 1)/a}
Proposition 6 implies that when « tends to 0, the quantity

w{Ty> B~ (m+1)/a}
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converges to e '. Since m diverges with a, we. conclude that for a small
enough we have

Ga(l) Sew([tlfl)ﬂ

and this concludes the proof of the theorem.

6. PROOF OF THE MAIN THEOREM

We first consider the case in which the starting point is chosen
according to the invariant measure y.

Theorem 10. For any positive integer n and any sequence of
positive real numbers s,, 5,,... the following holds:

lim p{T,>P,s, T:—=To>PoSsps Ti—Tr '>B,s, b =[] e ¥
a0t ;
Jj=1

Proof. The proof is by induction. The case n=1 was proven in
Theorem 5. The proof of the induction step follows essentially the same
scheme as the proof of Theorem 5. The new point is that now we must
control the length of the first return time to the interval [1/2, 1] after each
entrance in the interval 10, a].

Let us call D, the set

D,={T'>B.s1, T2 =T > P53, T"—=T" ' > B.5,}

and let us assume that the result holds up to the integer n. We are now
going to prove it for n+ 1.
We observe that

D, =D, " {T,oF%* ' + UoFe>p,s,. ,})

In order to control the probability of this set, we will find a larger and a
small set with comparable measures. The set D, ., is contained in the
union of the two sets

D,n{UsFi<mfa}n {Tyo Fe*' > f,5,, 1 —mja}
and
{(UoFa>mja)}
Since

{tloFletl<m) < {T o Fetl <mja)
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using
mla<p,s, . —mja
for a small enough, we conclude that the set
D, {UcFag<maln {T o Fa*'>B s, . —mja}
is contained in the set
D, {UcFua<mja} N {T' o Fatm>B s,  —2mja}

We are now ready to use the mixing property to get an upper bound for
the measure of the above set. Using Corollary 3, we get

u((Dy {UeFe<mjay n (T Fa*"> B,s, . —Imja}))
<(L+CO™) (D, (U Fo<mfa}) p({Th> Bos,y 1 —2m/a})
<(1+CO™) u(D,) w({T2> B,5,, —2mja})

Using the induction hypothesis, Theorem 5, and Proposition 6, we
conclude that the above number converges to

e
j=1
We now prove that the remaining term in the upper bound
i e ({U0F1’3>m/a}>)
k

converges to 0. We do that by introducing the partition (A4, ) defined in the
following way:

Ap={r;=k}
Since
A, {UoF'a>mja}
=A,n{UcF>mja} < {t">k—1}n{UcF*>mja}
we can use Proposition 2 to conclude that

”<U (Akm({UoFk>m/a})><C,u{U>m/a} Y p{ti>k—1}

kzn

< Cu{U>mja} [ o du
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Using
Jrﬁdp=n§ridy

and the first part of Lemma 8, we finally get

(enn(foor-g ezt

This last quantity tends to zero by Proposition 4.
We now prove a lower bound for the measure of D, ,. By definition,
Us F*s 2 1/a. Therefore the set D, contains the set

D N T oFa*i >R85,  —1/a}
We will consider the even smaller set
D, {TLoFatms s, —mja} o {the Fiat i >m)}
We now have the lower bound
(D, (ThoFatm> B s, —mja}n {tho Fr1>m)))
> (D, 0 {Tyo Fr "> fos5, 0 —mfa})) = p(({the F5*' <m}))
Using in both terms the mixing property given in Corollary 3, we get
u((D, O {To F* ™ > By, . ~mfa}))
> (1-CO0™) w(D,) w({Ty> Bos, .1 —mja})
and
p(N {zho Fer <m})) < Cpl{r, < m})

As before, the first quantity converges to

n+1

[Te™
ji=0

and the second one converges to zero by the second part of Lemma 8. This
concludes the proof of Theorem 10.

We now conclude the proof of the Main Theorem. In order to do this,
it is enough to extend Theorem 10 to the nonequilibrium situation. In other
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words, for any positive function g of bounded variation and integral 1 we
have to prove that for any integer n

tim ((D,) = [ 15,(6) x) ) =0

a—0+

where the set D, is given by
D,={T'> B8, T>—T->B,53yy T"—T7 "> B,5,}

a a

We first remark that

f xp,(x) g(x) dx — f X0,(X) X7 > Liayy 8(X) dx

is positive and bounded above by
[ 17y« iy 80 dx <Nl 11/l o | 715 1000y )

By Proposition 6 this last quantity converges to 0 with a. Therefore it is
enough to prove that

iy ((0,) = 10) 2755 10 (30 i) =0

a0t

The proof now follows exactly the pattern of the proof of Theorem 5. We
start by indicating how to treat the case n=1 with s, =s. We introduce
again a partition (A,) which is now defined by

Ap={x:Nyo(x)=k}
It will be useful to introduce also the set B given by
B={tl<m+1}

where m= [ {aL(a)}"*].
It is easy to verify that for any integer &

{T.>L(@)} " {To F" > B,s—m}nB)YN A, < {T > B,s} N Ay
and also

{T!>B.s}nAc({T> L@} n {T o F" 5> s —(m41)/a})n A,
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Now we follow step by step what we did to prove Theorem 5. The
procedure is the same for a general integer n. This concludes the proof of
the Main Theorem.
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